260 research outputs found

    Nano for Chemists

    Get PDF
    In the current nano-hype that permeates various fields of science and technology, how can chemists contribute to the big picture? And in particular, what is Nanochemistry? What characterizes this research field? Such questions were recently addressed by Ozin, Arsenault and Cademartiri

    Electronic characterization of supramolecular materials at the nanoscale by Conductive Atomic Force and Kelvin Probe Force microscopies

    Get PDF
    The performances of organic (opto)electronic devices strongly depend on the order at the supramolecular level. Unraveling the relationship between structural and electronic properties in nanoscale architectures is therefore key for both fundamental studies and technological applications. C-AFM and KPFM provide an immediate correlation between the morphology of a material and its electrical/electronic properties such as local conductivity and surface potential. Thus, they are unrivaled techniques offering crucial information toward the optimization of the real devices, ultimately providing an important contribution to a hot field at the cross-road between nanoscience and organic (opto)electronics. Herein we focus on the application of C-AFM and KPFM on self-assembled monolayers (SAMs), organic (semi)conducting materials for thin film transistors (TFTs) and organic blends for photovoltaics (OSCs)

    Simulation and Post-Processing for Advanced Driver Assistance System (ADAS)

    Get PDF
    Considering the continuous development in the automotive sector and autonomous driving technology, it is necessary to conduct continuous research to identify the main points that can allow continuous improvement of system autonomy. In addition to designing new components, an important aspect is characterizing the test procedures uniformly. The present work is related to analyzing the testing phases of a vehicle concerning the post-processing of the tests, using suitable software and routines, and creating an overall summary report that includes information on the type of instrumentation and type of test and post-processing results. The paper proposes the generation of an innovative tool designed to improve the generation capacity of test maneuvers for Advanced Driver Assistance Systems (ADASs) and to automate the collection and analysis phase of data relating to tests for a Lane System's Support System (LSS), Autonomous Emergency Braking (AEB), and Car to Pedestrian Nearside Child (CPNC) comply with Euro NCAP LSS 3.0.2, Euro NCAP AEB C2C 3.0.2 and UNECE R-152. The goal was achieved with the collaboration of the company Nardo Technical Center S.r.l. The entire post-processing routine was developed from data relating to experimental tests carried out in the company

    Observation of different charge transport regimes and large magnetoresistance in graphene oxide layers

    Get PDF
    We report a systematic study on charge transport properties of thermally reduced graphene oxide (rGO) layers, from room temperature to 2 K and in presence of magnetic fields up to 7 T. The most conductive rGO sheets follow different transport regimes: at room temperature they show an Arrhenius-like behavior. At lower temperature they exhibits a thermally activated behavior with resistance R following a R = R0exp(T0/T)p law with p = 1/3, consistently with 2D Mott Variable Range Hopping (VRH) transport mechanism. Below a given temperature Tc, we observe a crossover from VHR to another regime, probably due to a shortening of the characteristic lengths of the disordered 2D system. The temperature Tc depends on the reduction grade of the rGO. Magnetoresistance DR/R of our rGO films shows as well a crossover between positive and negative and below liquid He temperature DR/R reaches values larger than 60%, surprisingly high for a \u2013 nominally \u2013 non magnetic material

    Long-range selective transport of anions and cations in graphene oxide membranes, causing selective crystallization on the macroscale

    Get PDF
    Monoatomic nanosheets can form 2-dimensional channels with tunable chemical properties, for ion storage and filtering applications. Here, we demonstrate transport of K+, Na+, and Li+ cations and F- and Cl- anions on the centimeter scale in graphene oxide membranes (GOMs), triggered by an electric bias. Besides ion transport, the GOM channels foster also the aggregation of the selected ions in salt crystals, whose composition is not the same as that of the pristine salt present in solution, highlighting the difference between the chemical environment in the 2D channels and in bulk solutions

    Precise reply and clarifications on behalf of Sicilian Public Health Authorities to the case report published by La Rosa and collegues

    Get PDF
    As a results of the case report “Post-rotavirus vaccine intussusception in identical twins: a case report” recently published on Human Vaccines & Immunotherapy by La Rosa et al., the principal Sicilian Public Health Authorities decided to specify several points and underline some important details omitted by the authors. In particular, aims to underline the remarkable benefit for Sicilian Regional Health service after the introduction of the rotavirus vaccination. Universal mass vaccination against rotavirus is properly managed by the Regional Health Authorities and is contributing to a consistent increase of public health in the Sicilian pediatric population; any modification of such a program should be based on robust scientific evidences. Finally, a single case report should not be considered as a basis to recommend a change in the clinical practice but instead a possible point of start for discussion and research

    Covalent Organic Framework (COF-1) under High Pressure

    Get PDF
    COF-1 has a structure with rigid 2D layers composed of benzene and B3O3 rings and weak van der Waals bonding between the layers. The as-synthesized COF-1 structure contains pores occupied by solvent molecules. A high surface area empty-pore structure is obtained after vacuum annealing. High-pressure XRD and Raman experiments with mesitylene-filled (COF-1-M) and empty-pore COF-1 demonstrate partial amorphization and collapse of the framework structure above 12–15 GPa. The ambient pressure structure of COF-1-M can be reversibly recovered after compression up to 10–15 GPa. Remarkable stability of highly porous COF-1 structure at pressures at least up to 10 GPa is found even for the empty-pore structure. The bulk modulus of the COF-1 structure (11.2(5) GPa) and linear incompressibilities (k[100]=111(5) GPa, k[001]=15.0(5) GPa) were evaluated from the analysis of XRD data and cross-checked against first-principles calculations.\ua0\ua9 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinhei

    A computational platform for the virtual unfolding of Herculaneum Papyri

    Get PDF
    Ancient Herculaneum papyrus scrolls, hopelessly charred in the 79 A.D. Vesuvius eruption, contain valuable writings of the Greek philosophers of the day, including works of the Epicurean Philodemus. X-ray phase contrast tomography has recently begun unlocking their secrets. However, only small portions of the text hidden inside the scroll have been recover. One of the challenging tasks in Herculaneum papyri investigation is their virtual unfolding because of their highly complicated structure and three-dimensional arrangement. Although this procedure is feasible, problems in segmentation and flattening hinder the unrolling of a large portion of papyrus. We propose a computational platform for the virtual unfolding procedure, and we show the results of its application on two Herculaneum papyrus fragments. This work paves the way to a comprehensive survey and to further interpretation of larger portions of text hidden inside the carbonized Herculaneum papyri

    A Flexible Spiraling‐Metasurface as a Versatile Haptic Interface

    Get PDF
    Haptic feedback is the most significant sensory interface following visual cues. Developing thin, flexible surfaces that function as haptic interfaces is important for augmenting virtual reality, wearable devices, robotics and prostheses. For example, adding a haptic feedback interface to prosthesis could improve their acceptance among amputees. State of the art programmable interfaces targeting the skin feel‐of‐touch through mechano‐receptors are limited by inadequate sensory feedback, cumbersome mechanisms, or narrow frequency of operation. Here, a flexible metasurface is presented as a generic haptic interface capable of producing complex tactile patterns on the human skin at wide range of frequencies. The metasurface is composed of multiple “pixels” that can locally amplify both input displacements and forces. Each of these pixels encodes various deformation patterns capable of producing different sensations on contact. The metasurface can transform a harmonic signal containing multiple frequencies into a complex preprogrammed tactile pattern. The findings, corroborated by user studies conducted on human candidates, can open new avenues for wearable and robotic interfaces
    corecore